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ABSTRACT
Massive Multiple-Input Multiple-Output (mMIMO) is a promising technology for improving the
energy efficiency (EE) of wireless communication networks. However, there are several
conflicting objective problems that need to be addressed to achieve optimal EE in mMIMO
network. In this paper, we present an optimization framework, which is based on multi-objective
optimization (MOO) used to investigate a pricing cost based approach in mMIMO network. A
network pricing cost is introduced to the energy consumption as a penalty for the achievable
spectral efficiency (SE), and studies its impact on the tradeoff between the EE and the throughput.
It is difficult to directly solve the problem as it is non-convex, and thus scalarization technique
was used to transform the MOO problem into a single-objective optimization (SOO) instead of
using iterative algorithms that relied on the dual decomposition for obtaining the pricing cost,
optimal throughput and EE. Finally, numerical simulations are used to characterize the
interaction between the EE and throughput for various network parameters such as power when
the network is designed from the energy-efficient perspective.
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INTRODUCTION
The future generation technology (5G/6G) is designed to give enhanced performance, providing
gigabit data traffic, ultra reliable low latency and massive connectivity to internet of things [1],
[2]. Due to their performance and enhanced hardware, 5G networks also result in improved
energy efficiency (EE), in bits per Joule, with respect to the predecessor generations of
technology like 4G and 3G. However, despite of this improved EE, the growth in data
throughput and the use of massive MIMO (mMIMO) networks are presently leading to increase
energy consumption [3].

The mMIMO network is one of the main key technologies for boosting energy performance as it
allows antenna arrays to direct narrow beams towards the user equipments (UEs) thereby
increasing the spectral efficiency (SE). 5G/6G together with mMIMO network is four to six
times more spectrum efficient than 3G/4G deployed with conventional radio solution.

Furthermore, in the design and operation of mMIMO technology, different objective functions
and requirements need to be considered, which calls for an efficient network optimization
framework that is able to jointly take into account all the conflicting 5G/6G objectives.
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Generally, the main challenges towards the efficient solution of multi-objective problems (MOPs)
are the increased complexity and the selection of the best compromise solution.

However, a useful survey of multi-objective optimization (MOO) has been presented in [4-6],
where its application on the design of 5G networks has been proposed. In [4], two different
solving techniques have been discussed, namely scalarization and visualization, for example,
weighted-sum metric (WSM), weighted product metric (WPM), weighted Chebyshev metric
(WCM), etc. Also, a MO problem of three conflicting objective functions for designing mMIMO
networks, that is the EE, average area rate, and user rate, have been considered as case study.

The authors in [5] considered the tradeoff between EE and spectral efficiency (SE) in the
operation of downlink mMIMO networks utilizing MOP, where it is solved by transforming the
MOP into a single-objective (SO) one with the help of a scalarization method and WSM.

The authors in [6] considered a complete framework for solving MOPs of conflicting objectives
in 5G wireless networks with mMIMO, which is based on multi-objective evolutionary
algorithms (MOEAs), namely, non-dominated sorting genetic algorithm-II (NSGA-II) and
speed-constrained multi-objective particle swarm optimization (SMPSO). The authors compared
two MOEAs (i.e., NSGA-II and SMPSO) and the numerical results generated shows that NSGA-
II gives better Pareto Front quality, and SMPSO is faster.

Moreover, a pricing-based method in [7] and [8] is adopted for SE-EE tradeoff problem in many
practical networks such as vehicular ad-hoc networks (VANETs) and relay-assisted multiuser
networks. A network price is introduced to the total power consumption as the penalty for the
achievable sum rates. A pricing-based utility was used to balance the power consumption and the
sum rate. Since the utility function is non-convex and the probability constraints are intractable,
the authors in [8] used Bernstein approximation and successive convex approximation (SCA) to
tackle convex optimization problem. Besides, the EE maximization and q-price algorithms were
only considered to solve a pricing-based method.

In this work, we use a MOO, which is a mathematical framework to solve design problems with
pricing-based utility function.

METHODOLOGY
System Model
We consider a Zero forcing (ZF) precoding mMIMO network, assuming a cellular network of L
wrap square cells of area A = d2, where the UEs are uniformly distributed in each cell at a
minimum distance d [3-6]. Here, K single-antenna UEs per BS are served by a BS having a
uniform planar array (ULA) with M = MV ⤫ MH antennas and is the allocated transmit power
to kth UE in the L cells.

(1)
(2)
(3)
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For simplicity, perfect channel state information for each BS is assumed. The single-cell and
multi-cell effective signal to interference and noise ratio (SINR) expressions using ZF as
obtained in [9-10] are given below.

Where is the large-scale fading.

Where is the number of active antennas at the mth BS, is the large-scale fading of the
kth UE at the mth BS and is the allocated transmit power to the kth UE at the mth BS and

is the mth BS array gain. The summation is used to determine interference. ZF
precoding suppresses intra-cell interference [9] and we assume that each UE treats inter-cell
interference as noise. Therefore, a SE maximizes the SINR in (4) for a given M and K as derived
in [3]:

Where τc is the total coherence block length and τp is the pilot coherence block length. The term
is the prelog factor that represents the portion of samples per coherence interval that are

used for downlink data transmission.

Throughput (bits/s) is obtained by the multiplication of operational Bandwidth (Hz) and SE
(bits/s/Hz).

Accurate energy power consumption modeling is crucial for designing energy-efficient mMIMO
networks. In a practical network, using more M has a cost in terms of increased circuit power [3].
Hence, more practical energy consumption as model during a time interval T may be expressed
in (7) as obtained in [9] and [14].

(7)

where 1 ≥ 0 and 2 denote the energy consumption per antenna and the amplifier inefficiency
factor which accounts for power dissipation in the amplifiers. The values depend on the
hardware quality deployed at the BS. Circuit power consumption ( ) is the total summation of
the static hardware power, power per radio frequency transceiver chain, cooling system power,
signal processing and coding/decoding/backhaul powers, etc.
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The EE of a cellular network is the throughput (number of bits transmitted successfully) per unit
of energy. EE formulated below from the above definition as:

(8)

Which is measured in bit/Joule and can be seen as a benefit-cost ratio, where the quality of
service (throughput) is compared with the associated costs (energy consumption) [3]. Hence, it is
a key performance indicator of the network’s bit-delivery efficiency. In mMIMO networks, EE is
dependent on many factors, i.e., network architecture, throughput, power consumption by the
entire network, and transmission protocol [3–9].

Multi-Objective Optimization (MOO)
Instead of assuming that one of the objectives is the sole objective, the fundamental method is to
recognize the existence of multiple objectives [4]:

(9a)

where N is the number of objectives. Single-objective optimization problems (SOOPs) are MOO
problems with N = 1 and are thus trivial from the MOO perspective.

Solving a Multi Objective Optimization problems (MOOPs) by Scalarization
An alternative way to solve MOOPs in practice is the a priori method where the network
designer articulates preferences before any computations take place. Consequently, the MOOP in
(9a) is converted into the SOOP.

(9b)

This conversion is called scalarization and the solution is a weak, and usually also strong, Pareto
boundary point. In contrast to the traditional method of having a sole performance objective and
expressing other potential objectives as constraints, (9) combines the N objectives into a scalar
goal function and has no additional constraints. It is indeed possible to impose constraints on the
acceptable values for certain objectives also in the scalarization case, but it is not required. The
goal function can take many forms and a variety of methods can be found in the literature; see
[11–12].

Designing mMIMO by MOO Framework
MOOP is defined in (9). These objective functions (N = 3) are EE, area throughput, and UE
throughput. The three objective functions are defined in (10).

(10a)
(10b)
(10c)
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Problem Formulation
The MOOP that aims at simultaneously maximizing the aforementioned three objective
functions can be expressed as

(10d)

(1), (2), (3),

Single-Objective Optimization (SOO)
The traditional method to physical-layer network optimization is that of selecting a scalar
network utility function that is maximized under a set of constraints [7, 8]. A common problem
formulation is that of maximizing the weighted sum of the UEs’ data throughput under transmit
power constraints. Alternatively, one can minimize the transmitted power under the constraint of
guaranteeing certain data throughput to each UE. In recent years, the EE has also arisen as a
utility function [13].

Pricing-based power Problem Formulation
A pricing-based power problem is formulated in this section. We first define a network pricing
cost q ≥ 0 of consuming power resource and the associated network utility ( or ), which
strikes a balance between the throughput ( or ) in (11) and the utilizing power in the
objective of (7) and expressed as

(11a)
(11b)

Where and are the user network utility and area network utility functions of EE or
throughput which depends on the network pricing cost q. When the network pricing cost, q, tends
to zero, it implies that the cost to utilize power resource is negligible, and the problems (11)
degenerate into a throughput maximization problem. With the growth of the cost, the network
utility turns into an EE-like optimization function. For an extreme case where cost, q, tends to
infinity, no transmission is the best strategy to maximize the network utility.

The SOOP that aims at maximizing the aforementioned area utility function can be expressed as
(12)

(3)

II. SIMULATION RESULTS AND DISCUSSION
A classic wrap-around was applied to avoid edge effects [3,4].The 16-cell setup is utilized, each
cell has an area of 0.0625 km2 and each consisting of a BS with M antennas and K single-antenna
UEs. The antenna array used at the BS is uniform planar array (UPA) where M is 625 (25 25).
The K UEs are uniformly distributed in the cell, with a minimum distance of 35 meters. For a
randomly picked UE, let the channel variance and inter-cell interference power receive by all the
base stations be represented as 1.72 ⤫109 and 0.54.Using the same 3GPP pathloss model as in
[13]. The optimization variables in this work are the number of BS antennas M, the number of
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users K, and the transmit power P per cell. The average user throughput and the total power
consumption per cell are defined. For simplicity, we assume that each BS has obtained perfect
CSI for its UEs and applies ZF precoding, which nulls out intra-cell interference by
beamforming and adapts the power allocation to guarantee the same throughput to each UE. The
throughput is shown in (6) to be under the assumption that each UE knows its useful channel.
The prelog-factor in (5) accounts for the necessary overhead for channel acquisition. The EE, UE
throughput, and Area throughput were computed by performing Monte-Carlo simulations to
obtain the numerical results. The simulation parameters are listed in Table I.

Table 1: Simulation Parameters
Parameter Value
Network layout Square pattern (wrap-around)
Cell area 0.25km ⤫ 0.25km
Maximum Number of BS antennas ( ) 625
Communication Bandwidth (B) 20 MHz
Maximal radiated power per BS antenna ( ) 100W
Noise power 1⤫10-13W
Coherence bandwidth 200⤫103Hz
Coherence time 5⤫10-3s
Inter-site distance 0.25km
Average strength of inter-cell interference 0.5419
Hardware power consumed per transmit antenna, 1 0.5W
Hardware power per UE 0.2W
Efficiency of the power amplifiers at the BS, 2 0.31

We now depict how the MOO framework can be used to investigate tradeoffs between these
, , and with the purpose of deriving new insights and confirming old beliefs.

Fig. 1: Average EE and User throughput for different network Fixed Cost q.
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It is seen that the average User throughput performance decreases as the fixed cost q increases,
while there exists an optimal cost in terms of the maximum average EE at q = 6.45. Therefore,
the adjustment of the cost leads to a performance tradeoff between the average EE and User
throughput.

Fig. 2: Average Area EE and Area throughput for different network Fixed Cost q.

It is clear that the average Area throughput decreases with the growth of the Fixed Cost q, while
there exists an optimal price in terms of the maximum average EE at q=3.7. The average EE at
the cost q=2.21 or q=3.87 is not the maximum average EE since it is not equal to fixed cost q.
Hence, in fig. 1 and fig. 2, the adjustment of the Fixed Cost q is vital when there is a tradeoff
between the EE and throughput.

Fig. 3: Average Area EE and Area throughput versus BS transmitting power.
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There are exponential growth of average EE and area throughput from -24dBm to -14dBm and -

16dBm to -8dBm respectively. There is a finite increase in area throughput from -24dBm to -

14dBm while EE saturates at -11.84dBm and the average area EE is basically steady for most

values of power ≥ -11.84dBm with small variations. In this case, the area EE saturates, which

shows that the excess transmit power should not be used because it would degrade EE

performance. The optimal area EE (Average Area EE = 21.89Mbit/J) can be achieved based on

the optimal transmit power (-11.84dBm). However, one can increase the EE and area throughput

by increasing the BS transmission power. Thus, the area throughput is improved by having a

larger number of UEs transmitted to and not by increasing the user throughput. The EE is not

monotone in the transmit power and this is a fundamental difference compared to conventional

performance metrics, which instead are monotonically increasing in the transmit power and EE is

maximized by a finite power level [14].

Fig. 4a: EE versus Area Throughput for different circuit power consumption ( )
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Fig. 4b: EE versus Area Throughput for different circuit power consumption ( ).
In fig 4a and 4b, the optimal EE can be achieved based on the circuit power consumption ( ).

From fig. 4a, when the maximum EE = 18.86 Mbit/joule and the minimum EE = 14.00

Mbit/joule, the user throughput is 46.67Mbit/s with ( ) = (625,20mW) and ( ) =

(625,100mW) respectively. While in fig 4b, the maximum EE = 18.87 Mbit/joule and the

minimum EE = 12.67 Mbit/joule are achieved at area throughput of 50.00Mbit/s with ( )

= (625, 20mW) and ( ) = (625,100mW) respectively. If there is increased power

consumption in radio frequency transceiver chain or any circuit components, the EE is drastically

reduced. In this case, the EE saturates, which illustrates that the excess transmit power should not

be used because it would decrease EE. The maximization of the numerator of (8) leads to growth

in BS transmit power as illustrated in fig. 3 and maximizing the EE yields a that has the

lowest value in fig. 4. In (7), if >> , the denominator of (8) becomes approximately steady

and EE maximization reduces to the maximization of the numerator of (8).
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Fig. 5: Network Utility U versus Fixed Cost q

Fig.5 shows the comparison of the Network Utility between area throughput and user throughput.
By noting that and comparing with the fig. 2, this obviously means that the area
throughput is improved by transmitting to more UEs that is large K with small cell area and not
by increasing user area throughput.

Fig. 6: Visualization of the tradeoff between average user throughput, average area throughput,
and EE.
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Fig. 6 proves that high area throughput are only achievable when the user throughput is low,
which shows that we serve many UEs in parallel. Contrarily, high user throughput is only
achievable by having fewer active UEs. High EE is possible when user throughput is low. Thus,
the optimal EE, the optimal area throughput and optimal user throughput values of the mMIMO
network are obtained as shown in figure 6 are 21.32 Mbit/joule, 48.00 Gbits/s/km2 and
44.00Mbit/s respectively with ( ) = (625,100W). These different optimal values are
achieved by different resource utilizations. Therefore, M and K are different and the signal
processing related to precoding changes. This illustrates the otherwise heuristic belief that the
network architecture must be dynamic (e.g., in terms of precoding adaptation and switching off
antennas) if different optimal points should be attainable in different traffic cases.

CONCLUSION
In this paper, we have presented a MOO framework for solving conflicting objective function
problem in mMIMO network using a pricing based method for improving the EE among UEs. A
pricing based method was adopted to strike a balance between the throughput and energy
consumption. While the considered objective function problem was intrinsically non-convex, a
scalarization technique was used to transform the problem into a SOO instead of using iterative
algorithms that relied on the dual decomposition for finding the q-pricing cost, power allocation,
optimal throughput and EE. To further maximize the systematic EE and throughput in the perfect
channel state information, ZF precoding was considered. We compared the performance of the
MOO framework by monte-carlo simulations and quantified the effects of tradeoffs performance
parameters on mMIMO network by obtaining the optimal EE and throughput.
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