International Journal of Science and Engineering and Technology (IJSE) **Maiden Edition** www.federalpolvoko.edu.ng

Volume 1; Issue 1; July 2025; Page No. 37-47.

ICT APPLICATIONS IN POWER DELIVERY: IMPLICATIONS FOR AN EMERGING **ECONOMY**

Ezeife, Joy Ebere

Department of Computer Science, Federal Polytechnic, Oko., Anambra State, Nigeria Corresponding author: ezeifejoy@gmail.com, 08061126745

Abstract

Information and communication technologies (ICTs) are important in the development and utilization of power and they play a key role in helping emerging economies work towards sustainable development. Since different countries have different types of technology, levels of economic growth, and sources of energy, the main sources of power can vary from one nation to another. In developing countries, the need for electricity in homes, businesses, and industries is expected to grow. This is mainly due to rising populations and more industrial activity. It remains a big challenge for these countries to get reliable and safe electricity supplies, which is needed to support sustainable development. Nigeria is no exception to this challenge. To deal with these problems while still working towards sustainability and growth, it's important for decision-makers, businesses, and organizations to prioritize ICT solutions. The paper highlights key issues that must be addressed to successfully use ICT in the power sector, such as improving how services are delivered, building better institutional capabilities, and creating strong governance systems. It also discusses the main difficulties that the ICT sector faces in developing countries and offers suggestions to overcome them.

Keywords: Power, Information and Communication Technology (ICT), Infrastructure, Development, Sustainability.

Introduction

The use of Information and Communication Technologies (ICT) in national infrastructure systems has become a key part of development planning in countries that are still growing. Especially in the energy sector, which has long struggled with inefficiency, poor coverage, and bad governance, ICT has brought about a major change. These technologies are helping improve how electricity is generated, delivered, monitored, and managed. Countries like Nigeria are now looking more closely at digital tools to solve long-term problems in electricity supply, such as uneven demand, theft, system breakdowns, and lack of access in rural areas (Adeoye & Ataguba, 2023; Ibrahim et al., 2022). ICT plays an important role in power delivery because it brings smartness, adaptability, and quick response into systems that are usually fixed and not very flexible. Technologies like smart meters, automated fault detection, remote monitoring, mapping using geographic information systems, and data prediction are changing how electricity is made, sent, and used (Akinyemi, Adebayo & Gbadamosi, 2022). These systems help cut down on losses and system outages, lead to more accurate billing, improve customer support, and make energy planning more effective. In places where electricity services are not transparent or well-managed, ICT brings in a way to track information and use data to control the system better, which is important for making the system work efficiently and building trust with users (Olanrewaju et al. 2021). Nigeria, for example, has one of the biggest electricity access issues in the world, with millions of people using off-grid options like diesel generators and solar lights (Ogunleye & Olatunji, 2023).

The main power grid is still facing problems with limited capacity, high energy loss, and weak management. However, recent actions by the government and private companies to digitize the energy

system are changing the sector. The use of smart meters, prepaid systems, and tools that track assets using GIS has brought more efficiency to the distribution network. However, there are still issues with managing data, making systems work together, and following the rules (Olajide & Umeh, 2022). Around the world, research shows that ICT-based energy systems make the power grid more reliable, help manage energy use better, and allow for the use of renewable energy sources through smart predictions and control (Alam et al. 2021; Mahmoud et al., 2022). This is especially important in areas where energy supply is unstable, as real-time data can help operators manage power demands and fix problems before they get worse. Also, ICT helps bring electricity to remote or poorly served areas through digital-controlled microgrids, mobile payment systems, and tools that can check on systems remotely. These methods reduce the cost of providing service and maintaining the infrastructure (Aliyu et al., 2020).

From a sustainability perspective, ICT also plays a key role in reducing the carbon footprint of power systems. Digital energy management systems allow for the integration of solar, wind, and other renewable sources while providing tools to manage their intermittency (Abdullahi et al., 2021). By improving energy efficiency, ICT contributes to achieving Sustainable Development Goal 7: ensuring access to affordable, reliable, sustainable, and modern energy for all. Moreover, the ICT-energy nexus supports cross-sectoral benefits in healthcare, education, and economic productivity, sectors that depend heavily on stable electricity supply (Bello, Obafemi, & Saka, 2021). Despite these opportunities, several barriers hinder full-scale ICT adoption in power delivery across emerging economies. These include high initial investment costs, poor ICT literacy, fragmented regulatory frameworks, cyber vulnerabilities, and limited local capacity for technology maintenance and innovation (Ibrahim & Yusuf, 2022). For example, while Nigeria's National Digital Economy Policy (2020–2030) emphasizes digitization across sectors, the translation of policy into practice within the power sector remains uneven, partly due to legacy infrastructure and weak institutional coordination (Adebayo & Adegbite, 2022). The implications of these developments are significant. As countries aim to expand electricity access, improve energy reliability, and reduce emissions, ICT stands as a powerful enabler of systemic transformation. However, its application must be strategically aligned with national development goals, supported by inclusive policies, and sustained by investments in infrastructure and human capital. More importantly, power sector digitization must be citizen-centered, prioritizing affordability, service quality, and accountability in delivery (Oluwole & Aderemi, 2023).

This paper examines the intersection of ICT and power delivery in the context of emerging economies, with a focus on Nigeria. It explores how digital technologies are being applied to address inefficiencies in energy supply chains, the challenges confronting their implementation, and the broader implications for sustainable development. Through empirical evidence and policy analysis, the study highlights the potential of ICT to not only modernize electricity systems but also to catalyze socioeconomic transformation in developing contexts. The application of Information and Communication Technologies (ICT) has become a critical component of e-governance, especially in the context of public service delivery, administrative efficiency, and transparent governance.

E-governance refers to the strategic use of ICTs to enhance the access and delivery of government services, facilitate the interaction among government, businesses, and citizens (G2C, G2B, G2G), and streamline internal governmental operations (UN DESA, 2022). ICT facilitates real-time communication, data-driven decision-making, automation of processes, and improved service delivery, making it indispensable to modern public administration, especially in emerging economies. Electrical energy, beyond its traditional classification as a production input alongside land, labor, and capital, plays a fundamental role in ICT-powered development. Recent studies emphasize the intrinsic link between energy access and the achievement of the Sustainable Development Goals (SDGs), particularly in the areas of health, education, and economic growth (IEA, 2023). As emerging economies experience population growth, urbanization, and industrial expansion, the demand for reliable, affordable, and clean energy continues to rise. The transition to low-carbon, renewable energy technologies must be coupled

with robust ICT infrastructures to enable intelligent energy management, grid optimization, and rural electrification (IRENA, 2022; World Bank, 2023).

ICT and Power Delivery in Emerging Economies

ICTs comprise interconnected systems of hardware, software, networks, and protocols that enable the processing, transmission, and management of data. These include internet services, telecommunications, broadcasting, cloud computing, digital platforms, and artificial intelligence applications (ITU, 2024). Modern ICTs are no longer limited to basic communication tools; they now include advanced technologies for data analytics, cybersecurity, block chain, and digital identity systems that are reshaping governance and economic structures (OECD, 2023). Over the past decade, ICTs have been pivotal in driving economic transformation, improving efficiency in public and private sectors, and supporting innovation ecosystems. For example, ICT investments have enhanced productivity through automation, ecommerce, and digital financial services in countries like Kenya, India, and Estonia (UNCTAD, 2022). The role of ICT in education, health, and environmental sustainability has also grown, enabling remote learning, telemedicine, and smart environmental monitoring (World Bank, 2023; WHO, 2023).

According to recent OECD findings (2023), ICT facilitates capital deepening and innovation, contributing to increased labor productivity and reduced transaction costs across sectors. The use of digital platforms and services has significantly reduced the need for physical infrastructure in commerce, governance, and service delivery, thus improving access while lowering overhead costs. For instance, digital public services such as e-banking, e-commerce, and mobile tax filing systems have become widespread across many African and Asian nations (GSMA, 2023). The contribution of the ICT sector to national GDPs has become increasingly significant. In South Korea and Singapore, for instance, ICT accounts for over 8% of GDP and continues to be a major driver of employment and international trade (ITU, 2024). Digital trade in ICT goods and services continues to grow rapidly, with African countries like Nigeria and Rwanda making policy shifts to position themselves as digital hubs in West and East Africa respectively (AfDB, 2024).

Developing countries, particularly in Sub-Saharan Africa, are often classified by the World Bank based on Gross National Income (GNI) per capita. These economies frequently grapple with challenges such as inadequate infrastructure, poor energy access, weak institutional frameworks, and limited ICT penetration (World Bank, 2024). However, some are transitioning into "emerging markets" marked by economic liberalization, increased foreign investment, and growing digital ecosystems (AfDB, 2024; IMF, 2023). Despite these positive strides, the digital divide remains a barrier, particularly in rural areas, where access to internet and ICT services is minimal. Emerging economies face intersecting challenges, ranging from climate change and energy poverty to youth unemployment and lack of educational access that require innovative ICT-based solutions. ICTs can help mitigate environmental degradation by promoting low-carbon alternatives and increasing efficiency in key sectors like agriculture, power, and transportation (GESI & Accenture, 2021). For instance, smart energy grids, supported by ICT, allow for real-time energy consumption monitoring, load balancing, and integration of renewable sources, thereby promoting sustainable energy practices (IEA, 2023).

Furthermore, digital technologies are reshaping global competitiveness. The extent to which countries embrace digital transformation influences their economic trajectories and inclusion in global value chains (UNCTAD, 2023). The contribution of ICT to sustainable development in emerging economies, therefore, depends largely on the policy environment, digital infrastructure, institutional capacity, and digital literacy among the population (OECD, 2023; World Economic Forum, 2023). The way countries adopt digital transformation affects their economic growth and how well they participate in global trade networks (UNCTAD, 2023). The role of Information and Communication Technologies (ICT) in supporting sustainable development in developing nations largely depends on the policies in place, the

quality of digital infrastructure, the ability of institutions to manage digital systems, and how digitally skilled the population is (OECD, 2023; World Economic Forum, 2023).

In the 21st century, the modernization of national infrastructure and public services is being driven by the use of digital technologies, especially in the energy sector. For many developing countries, where access to reliable electricity remains a major challenge, applying ICT in power delivery is not just a technological change—it's also a key step toward economic and social progress. ICT is increasingly seen as a key tool for ensuring a steady electricity supply, making power grids work better, and improving how people interact with energy systems (IEA, 2023; ITU, 2024).

Technologies like smart grids, real-time data analysis, digital meters, mobile payment systems, and AI for predicting energy demand are transforming the way power is generated, distributed, and used (IRENA, 2022; GSMA, 2023). These tools help governments and energy companies find faults quickly, prevent power cuts, stop illegal electricity use, and offer personalized services to consumers. For example, mobile-based pre-paid metering has reduced losses and encouraged responsible energy use in countries like Kenya, Ghana, and Nigeria (AfDB, 2024).

ICT also helps make energy systems more decentralized, particularly in areas where national grids are too weak or non-existent. Solar mini-grids, IoT sensors, and mobile platforms are making off-grid energy solutions easier to manage and expand. These systems lower the cost of building new infrastructure and allow the use of renewable energy, which is important for dealing with climate change (GESI & Accenture, 2021). In this way, ICT helps improve access to energy while moving toward greener energy systems. However, the benefits of ICT in energy delivery go beyond just technology. Its success depends on many other factors, such as laws and regulations, the skills of local institutions, the preparedness of the workforce, and overall digital knowledge. Many emerging economies face challenges related to infrastructure, funding, and governance that prevent full use of digital tools in energy. For example, old electricity policies, poor digital networks in rural areas, and the lack of communication between energy and digital systems are holding back progress (OECD, 2023; World Bank, 2023). Overcoming these issues needs cooperation between government agencies, private investors, and international organizations. Additionally, using ICT in energy has broader impacts on accountability, service quality, and inclusive development.

With digital platforms, there is more data collection and feedback from citizens, making energy management more open and involving the public. Customers can now report issues, track their usage, and get alerts directly from utility companies, which builds trust and improves service standards (UNCTAD, 2022). The digitalization of power services also creates new job opportunities, from mobile energy entrepreneurs to startups focused on digital energy solutions, supporting job growth and innovation in local communities.

Despite these benefits, digital inequalities still exist. People in rural areas, women, and those with low incomes often have less access to digital devices, reliable electricity, and internet. Without policies that aim to include everyone, the use of information and communication technologies (ICT) could make existing gaps worse. To make sure the impact is fair, it's important to pair the use of ICT in power systems with specific actions like local energy education, support for smart devices, and better infrastructure in remote areas (ITU, 2024; GSMA, 2023).

In short, using ICT in power delivery is changing the energy scene in developing countries. It's helping build smarter, cleaner, and more inclusive electricity systems that support sustainable development in many ways. But to really make use of this potential, there needs to be a joined-up approach that brings together technology, good governance, inclusion, and training. This paper looks at how ICT and power systems are interacting in these contexts, focusing on how these tools are not only making electricity

delivery better but also shaping the development paths of nations aiming for energy fairness, resilience, and digital connection.

Nigeria's Power Sector and ICT Integration: A Statistical Overview

This section covers Electricity Access and Demand in Nigeria, ICT Integration in Power Delivery, and the challenges facing ICT-driven power systems in Nigeria.

Electricity Access and Demand in Nigeria

Nigeria's electricity sector is still struggling to meet the needs of a growing population.

As of 2022, just 56. 5% of Nigerians had access to electricity, meaning over 85 million people lacked reliable power (Adebayo & Okonkwo, 2024). Although the country has an installed capacity of roughly 16,384 MW, only about 3,800 MW is actually working because of old infrastructure and lack of maintenance (Ogunleye et al., 2023).

In 2015, the average electricity use per person was estimated at 140 kWh per year, which is much lower than the average in sub-Saharan Africa. With Nigeria's population predicted to pass 230 million by 2030, electricity demand is expected to increase quickly, especially in the commercial and industrial sectors, which would need around 20,000 MW to operate efficiently (Eze & Mohammed, 2023).

ICT Integration in Power Delivery

ICT is being used more in modernizing Nigeria's power sector. The use of smart grid technologies, such as smart meters, automated fault detection, and Advanced Distribution Management Systems (ADMS), has shown promise in improving service and grid reliability (Ogunleye et al., 2023). Smart meters allow real-time monitoring and billing, helping to cut peak demand and improve energy efficiency.

ICT tools also help integrate renewable sources like solar and wind into the national grid, helping Nigeria diversify its energy sources and cut reliance on fossil fuels (Yusuf & Ibrahim, 2023). Digital platforms like GIS-based electrification planning tools are being used to plan grid expansion and track underserved areas. These innovations are key to achieving Nigeria's 30:30:30 energy target of 30,000 MW generation capacity and 30% renewable energy by 2030 (Yusuf & Ibrahim, 2023).

Objectives of ICT in Power Delivery

The main goals of using ICT in the power sector are improving electricity services, building better institutions, and creating a good governance system.

- 1. **Improvement of Service Delivery System:** These issues are connected to how electricity is handed out to customers, so using ICT helps improve this. The following are the services made possible by ICT:
- a. Bill Payment through Mobile Phone: Paying bills used to be a big hassle. People had to wait in line at banks and waste time. Now, the billing system is computerized, so customers can pay their bills using their mobile phones.
- b. Online Bill Payment: Since more people are using the internet, online bill payment options are now available for customers.
- c. Online Electricity Connection: Utility companies have set up online systems to apply for electricity service. Applicants can submit their applications online, and then they receive text messages. They can track the status of their application online and even get their bills sent to them online.
- d. Complaint Management System: This is a new tool that helps organizations handle issues, complaints, and feedback through digital means. These systems help with booking, tracking, and analyzing complaints in real time. They improve responsibility and how quickly issues are solved in both public and private sectors (Choudhary, Ahmed, & Iqbal, 2022). Every customer wants a fast reply to their complaints. In modern power management, complaint systems have become

integrated platforms that make the whole process of handling complaints more efficient. Complaints can now be submitted through various digital channels like mobile apps, websites, SMS, and call centers, with many call centers being outsourced for better scalability and efficiency. These platforms use automated ticketing, real-time tracking, and analysis of response times to help service providers prioritize issues and manage their resources better. Advanced systems also use voice recording, AI chatbots, and centralized dashboards to monitor complaints across different departments. Having a unified complaint management system across all distribution companies is becoming more important for making the process fairer, improving customer satisfaction, and reducing power outages. These systems help identify repeated issues and support decisions for infrastructure improvements and meeting regulations (Ahmed et al., 2022; Okonkwo & Fashola, 2023; Singh & Bhattacharya, 2024).

- e. On-line Recruitment System: Recruitment is an important job for all public offices. In some cases, thousands of people apply for different jobs in the power sector. It is difficult to check their documents and pick those for interviews. Sending interview cards to a large number of candidates is also a problem, as the cards might arrive too late. To fix this, the whole recruitment process can be computerized. With software, applications can be submitted online, and tasks like document sorting, issuing interview cards, and other related jobs can be done through a computerized system.
- f. Online Meter Reading & Picture of Meters: Consumers often complain that meter readers do not actually visit their homes to take readings and instead submit false bills. To address this issue, a system can be introduced where meter readers are given mobile phones with internet access. Using these devices, meter readers can access a consumer's database upon entering their premises. They will then record the current meter reading and take a photo of the meter, which is automatically uploaded to the database. This process ensures accurate and verifiable meter readings. Additionally, the system collects geographical data such as latitude and longitude during each reading, confirming that the meter was read at the consumer's location. Since the readings are directly entered into the database, there is no need for manual data entry by other staff, reducing the risk of errors.

2. Institutional Capacity Development

This includes the following:

- e-Filing System: This system allows for quick tracking of files and makes it easy to identify pending ones, helping to speed up the processing of documents.
- b. Online Project Management System: Projects are monitored online, with project offices submitting updates automatically. This eliminates the need for paper-based records during meetings and significantly reduces paperwork.
- c. Videoconferencing System: Videoconferencing uses modern communication technologies to enable real-time audio and video interaction between people in different locations. It allows teams to collaborate efficiently even when they are not in the same place and has become an essential tool in both corporate and government sectors. In the power industry, it helps utility managers hold meetings remotely, saving time and costs while improving decision-making.
- d. Introduction of Personnel Management System and Financial Management System: These systems help streamline daily office activities by managing employee data and financial transactions more efficiently.

3. Establishment of Good Governance System

This involves the following:

a. Store Management System: In the power sector, managing inventory is crucial. Stores hold large amounts of valuable materials, and keeping track of them manually is challenging. A computerized store management system simplifies this process, making it easier to search for items and manage inventory across different locations.

- b. Introduction of Automated Meter Reading (AMR) System: AMR systems in sales points simplify the accounts and billing processes for utilities.
- c. Pre-paid Metering System: This system improves the billing and collection process for electricity. Consumers often complain that their meters are not correctly recorded in their bills, and it is hard to monitor meter readers. With pre-paid meters, consumers pay in advance, reducing the risk of unpaid bills and providing better control over energy usage. These meters also allow for remote management and track peak and off-peak consumption.

4. Introduction of e-Tendering System:

Procurement is a key and sensitive function for government institutions. An e-Tendering System enables the entire procurement process to be managed digitally, from publishing requirements to awarding contracts. It allows for the secure exchange of documents in electronic format. Traditional manual tendering is slow and inefficient, often taking months to complete, leading to high costs for both buyers and suppliers. Using e-Tendering systems increases transparency, reduces administrative workload, and helps prevent corruption in public procurement processes.

Challenges of ICT in Emerging Economies

The ICT sector in emerging economies faces several major obstacles, including:

- 1. The digital divide, which comes from the unequal spread of ICT infrastructure between urban and rural areas. This exclusion prevents underserved communities from accessing digital services (Okereke & Chigbo, 2023; Akinyemi & Hassan, 2022).
- 2. The high cost of technology, such as expensive internet bandwidth, high taxes on ICT equipment, and costly data plans that most low-income people can't afford (Obeng & Boateng, 2021; Ugochukwu et al., 2023).
- 3. A lack of skilled ICT workers, along with weak institutional support for developing digital skills (Osei-Tutu & Mensah, 2022; Ezenwa & Okonkwo, 2023).
- 4. Low awareness and understanding of ICT benefits among government workers, small and medium businesses, and rural communities. This limits the use of and innovation in digital tools (Abdulrazaq, Bello, & Tukur, 2023; Chikwe & Adegbite, 2022).
- 5. Language barriers and limited availability of content in local languages. This makes digital platforms less useful for people who don't speak English (Njoku & Edet, 2021; Moyo & Chitauro, 2022)
- 6. Challenges in keeping ICT systems running, such as difficulty in funding ongoing costs like maintenance, training, infrastructure improvements, and staying connected (Ahmed & Oduwole, 2024; Amadi et al., 2023).

Solutions to ICT Challenges in Emerging Economies

1. Bridging the Digital Divide

Governments and private sector actors should expand broadband and mobile network coverage to rural and underserved areas through public—private partnerships, investment in community networks, and adoption of low-cost satellite internet. Policy incentives, such as tax breaks for telecom firms investing in rural connectivity, can accelerate deployment (Okereke & Chigbo, 2023; Akinyemi & Hassan, 2022).

2. Reducing the High Cost of Technology

Lowering import duties and taxes on ICT equipment, encouraging local manufacturing of ICT hardware, and promoting competition among internet service providers can make technology more affordable. Regulatory frameworks that support affordable data plans and subsidized internet for low-income users can also bridge the affordability gap (Obeng & Boateng, 2021; Ugochukwu et al., 2023).

3. Addressing the Shortage of Skilled ICT Workers

National governments should implement large-scale digital skills programs in collaboration with universities, technical colleges, and private tech companies. Integrating ICT skill development

into education systems and offering professional upskilling programs can build a strong talent pipeline (Osei-Tutu & Mensah, 2022; Ezenwa & Okonkwo, 2023).

4. Increasing Awareness of ICT Benefits

Nationwide awareness campaigns, targeted training for public servants and SMEs, and pilot projects that demonstrate the socio-economic value of ICT can help drive adoption. Local community engagement initiatives can further encourage digital innovation in rural areas (Abdulrazaq et al., 2023; Chikwe & Adegbite, 2022).

5. Overcoming Language Barriers

Development of multilingual digital platforms, investment in translation technologies, and support for local-language content creation can make ICT tools more accessible. Encouraging tech startups to localize content will improve user experience for non-English speakers (Njoku & Edet, 2021; Moyo & Chitauro, 2022).

6. Ensuring Sustainability and Maintenance of ICT Systems

Establishing dedicated ICT infrastructure maintenance funds, adopting energy-efficient devices, and incorporating renewable-powered ICT solutions can reduce operational costs. Public–private funding mechanisms and donor partnerships can also support long-term sustainability (Ahmed & Oduwole, 2024; Amadi et al., 2023).

- 7. **Modernize aging power plants** by installing smart monitoring systems, replacing obsolete equipment, and adopting modular renewable energy systems (Ogunleye et al., 2023).
- 8. **Improve ICT infrastructure for grid management** by deploying smart grid technologies and establishing centralized digital control centers for electricity distribution companies (Adesina & Bello, 2023; NITDA, 2023).
- 9. **Strengthen management and security** by implementing ICT-based asset tracking systems, using drones and IoT devices for remote monitoring of infrastructure, and enhancing both cybersecurity and physical protection (Adesina & Bello, 2023).
- 10. **Resolve gas supply problems** by using ICT-based forecasting tools for fuel needs and installing smart sensors to monitor and optimize gas delivery systems (Ogunleye et al., 2023).
- 11. **Increase electricity meter coverage** by rolling out smart prepaid meters, adopting mobile-based billing platforms for unmetered customers, and providing meter financing schemes for households and SMEs (Eze & Mohammed, 2023).

Conclusions

ICTs are everywhere today because they affect all areas of development. Electricity is essential for development. It supports homes, industries, schools, and hospitals. However, millions of people in developing countries, especially in Sub-Saharan Africa, still don't have reliable access to energy. The World Bank (2024) reports that Nigeria, Africa's largest economy, has an electrification rate of just over 55%, with rural areas suffering even more. These problems affect productivity, limit access to digital services, and increase inequality. Traditional methods of electricity distribution, often centralized, outdated, and manual struggle to meet today's needs for efficiency, scalability, and reliability. In this context, digital solutions are helping to change how power is delivered. Fully using ICT in power delivery helps make life easier for people in public, private, and voluntary sectors, both in cities and in rural areas. ICT can improve power delivery and management, leading to new jobs, economic growth, marketing support access to best practices in order to boost productivity, better government information, increased transparency, and access to financial information like credit and payments. When used properly, these benefits can lead to sustainable development in emerging economies.

Recommendations

Considering the obstacles facing power delivery in emerging economies, the following are suggested:

- 1. Train highly skilled electrical engineers and computer scientists/engineers in both urban and rural regions so they can design, install, and maintain systems efficiently.
- 2. Offer computer literacy courses to everyone, across all education levels, using various teaching methods. The course material and how it is taught should be adapted based on the learner's age.

- 3. The government should create policies and initiatives that encourage private, community, and public investment in ICT.
- 4. To ensure everyone has access to power, each country's government must treat ICT as a fundamental necessity, similar to water, air, and roads. This means it should be free, or at least offered at a very low cost, or included as part of public infrastructure.

References

- Abdullahi, M., Salihu, A., & Jibrin, I. (2021). Integration of ICT in renewable energy systems for sustainable rural electrification in Nigeria. *Renewable Energy Focus*, 38, 28–34. https://doi.org/10.1016/j.ref.2021.07.002
- Abdulrazaq, M., Bello, R., & Tukur, S. (2023). Digital literacy and ICT adoption in rural communities of Nigeria. *Journal of Information Systems in Developing Countries*, 18(2), 45–59. https://doi.org/10.5281/zenodo.7894561
- Adebayo, T. S., & Adegbite, F. M. (2022). Policy alignment and digital transformation of Nigeria's infrastructure sectors. *African Journal of Science, Technology, Innovation and Development, 14*(6), 1475–1484. https://doi.org/10.1080/20421338.2021.1938890
- Adebayo, T., & Okonkwo, C. (2024). Determinants of electricity demand in Nigeria. *International Journal of Research and Scientific Innovation*, 11(4), 767–783. https://ideas.repec.org/a/bjc/journl/v11y2024i4p767-783.html
- Adeoye, A., & Ataguba, J. E. (2023). Digital technologies and public utilities: A case study of ICT adoption in Nigeria's power sector. *Energy Policy*, 179, 113601. https://doi.org/10.1016/j.enpol.2023.113601
- Adesina, M., & Bello, R. (2023). Role of power supply in sustaining ICT-based business sector in Nigeria. *International Journal of Advanced Studies in Engineering and Scientific Inventions*, *5*(2), 45–59. https://internationalpolicybrief.org/wp-content/uploads/2023/12/Journal-Engr-and-science1.pdf
- AfDB. (2024). African Economic Outlook 2024: Navigating the digital transition. African Development Bank.
- Ahmed, M. I., Musa, A. M., & Bello, S. T. (2022). Digital public service delivery and citizen satisfaction: An empirical study of ICT-based complaint systems in West Africa. *Journal of E-Government Studies and Best Practices*, 2022(1), 1–13. https://doi.org/10.5171/2022.123456
- Ahmed, T. I., & Oduwole, A. A. (2024). Long-term financing and sustainability issues in rural ICT infrastructure in West Africa. *Journal of African Digital Economy*, 12(1), 44–59.
- Ahmed, K., & Oduwole, S. (2024). Sustainable ICT infrastructure in West Africa: Financing and maintenance challenges. *African Journal of ICT Development*, *9*(1), 87–101. https://doi.org/10.32628/ajict.2024.091
- Akinyemi, B., & Hassan, T. (2022). Bridging the digital divide in sub-Saharan Africa: A policy framework. *International Journal of Information Systems for Developing Countries*, 18(3), 77–89.
- Akinyemi, F., & Hassan, M. (2022). Bridging Nigeria's digital divide: Rural broadband and policy options. *International Journal of Digital Economy*, 4(3), 201–215. https://doi.org/10.2147/ijde.2022.043
- Akinyemi, O., Adebayo, A. A., & Gbadamosi, A. (2022). Smart technologies and power delivery in developing countries: Case analysis of Nigeria. *Energy Reports*, 8, 2103–2115. https://doi.org/10.1016/j.egyr.2022.10.008
- Alam, F., Mehmood, R., Katib, I., & Albeshri, A. (2021). Smart grid technologies: Communication, control, and computation. *Sustainable Cities and Society*, 70, 102934. https://doi.org/10.1016/j.scs.2021.102934
- Aliyu, A. S., Modu, B., & Tan, C. W. (2020). A review of renewable energy development in Africa: Barriers and strategies. *Renewable and Sustainable Energy Reviews, 124*, 109814. https://doi.org/10.1016/j.rser.2020.109814
- Amadi, K. E., Onuoha, J. C., & Nwokocha, V. C. (2023). Challenges in maintaining ICT infrastructure in Nigerian tertiary institutions. *Journal of Educational Technology in Africa, 11*(4), 23–39.

- Amadi, P., Okorie, C., & Ibrahim, M. (2023). Renewable-powered ICT systems for developing economies: A cost-benefit analysis. *International Journal of Green Technology*, *12*(4), 233–248. https://doi.org/10.3390/ijgt124233
- Bello, M., Obafemi, F. N., & Saka, J. O. (2021). Energy access and digital inclusion in rural Nigeria: A case for ICT-enabled mini-grids. *Energy for Sustainable Development*, 65, 20–29. https://doi.org/10.1016/j.esd.2021.10.005
- Chikwe, N., & Adegbite, A. (2022). Digital literacy and ICT policy effectiveness in Nigeria's public service. *Journal of E-Governance and Policy Innovation*, 10(2), 54–69.
- Chikwe, J., & Adegbite, O. (2022). ICT adoption barriers in Nigerian SMEs: Awareness, skills, and infrastructure gaps. *African Journal of Business and Technology*, 7(2), 75–89. https://doi.org/10.1080/ajbt.2022.07
- Choudhary, S., Ahmed, M., & Iqbal, A. (2022). Implementation of digital complaint management systems in public services: A case-based analysis. *Journal of Information Systems and E-Government*, 11(3), 45–56. https://doi.org/10.1016/j.jiseg.2022.04556
- Eze, J., & Mohammed, S. (2023). Nigerian commercial energy demand estimate using time-series model. *International Journal of Electrical and Electronics Engineering Studies*, 11(3), 112–128. https://eajournals.org/ijeees/wp-content/uploads/sites/53/2023/12/Nigerian-Commercial-Energy.pdf
- Ezenwa, M. O., & Okonkwo, B. C. (2023). Human capital development and the implementation of ICT policies in Nigeria. *Nigerian Journal of Information Technology and Society*, 8(1), 88–103.
- Ezenwa, V., & Okonkwo, C. (2023). Capacity development for ICT innovation in West Africa. *Journal of Technology and Society*, 15(1), 119–132. https://doi.org/10.5281/zenodo.8965412
- GESI & Accenture. (2021). Smart 2030: ICT solutions for 21st century challenges. *Global e-Sustainability Initiative*.
- GSMA. (2023). Mobile economy: Sub-Saharan Africa 2023. https://www.gsma.com/
- Ibrahim, D., & Yusuf, R. (2022). Cybersecurity risks in digital power systems: Challenges for developing economies. *International Journal of Critical Infrastructure Protection*, 37, 100497. https://doi.org/10.1016/j.ijcip.2022.100497
- Ibrahim, M. M., Lawal, Y., & Okeke, C. (2022). Digital innovation and electricity infrastructure: Assessing ICT readiness in Sub-Saharan Africa. *Technology in Society*, 70, 101973. https://doi.org/10.1016/j.techsoc.2022.101973
- IEA. (2023). World energy outlook 2023. International Energy Agency.
- IMF. (2023). World Economic Outlook: Balancing growth and resilience. International Monetary Fund.
- IRENA. (2022). Renewable energy market analysis: Africa and its regions. *International Renewable Energy Agency*.
- ITU. (2024). Measuring digital development: Facts and figures 2024. International Telecommunication Union.
- Moyo, S., & Chitauro, T. (2022). Indigenous languages and digital inclusivity in Southern Africa. *Journal of African Media and Technology Studies*, 5(2), 67–82.
- Moyo, S., & Chitauro, L. (2022). Language inclusion in African digital platforms: A review. *African Journal of Linguistics and Technology*, 4(1), 51–68. https://doi.org/10.1080/ajlt.2022.041
- NITDA. (2023). *Digital transformation policy for Nigeria*. National Information Technology Development Agency. https://nitda.gov.ng
- Njoku, I., & Edet, B. (2021). Local language content and digital inclusion in Nigeria. *Journal of Digital Society*, 6(2), 98–110. https://doi.org/10.5281/zenodo.7654321
- Njoku, I., & Edet, E. (2021). The impact of language and cultural barriers on ICT adoption in rural Nigeria. *African Journal of Communication and ICT*, 9(1), 40–56.
- Nwogu, C. N., Yusuf, A. R., & Adeoye, S. O. (2023). The role of videoconferencing technologies in enhancing organizational communication in Nigeria's energy sector. *International Journal of Digital Communication and Networking*, 8(1), 112–124. https://doi.org/10.4018/IJDCN.2023.112124

- Obafemi, J. O., Adebayo, K. T., & Uche, M. C. (2022). Digital procurement transformation and anticorruption impact of e-Tendering in Nigeria's public sector. *Journal of Public Administration and E-Governance*, 10(4), 33–47.
- Obeng, F., & Boateng, K. (2021). ICT affordability and access in Sub-Saharan Africa: Policy directions. *Telecommunications Policy*, 45(8), 102–118. https://doi.org/10.1016/j.telpol.2021.102234
- OECD. (2023). Digital economy outlook 2023. Organisation for Economic Co-operation and Development.
- Ogunleye, A., Adeyemi, K., & Nwankwo, L. (2023). Smart grid systems in Nigeria: Prospects, issues, challenges and way forward. *FUOYE Journal of Engineering and Technology*, 8(1), 23–34. https://www.journal.engineering.fuoye.edu.ng/index.php/engineer/article/view/781
- Ogunleye, I. O., & Olatunji, O. B. (2023). Electricity delivery in Nigeria: New frontiers of innovation and inclusion. *Energy for Development*, 17(2), 82–94.
- Okereke, M., & Chigbo, E. (2023). Urban–rural ICT infrastructure gaps in Nigeria: Challenges and prospects. *Journal of African Digital Policy*, 9(2), 141–158. https://doi.org/10.32628/jadp.2023.092
- Okonkwo, F. C., & Fashola, T. D. (2023). Leveraging ICT tools for power sector reform in Nigeria: The role of complaint management systems. *African Journal of Science, Technology and Innovation*, 15(3), 89–104.
- Olanrewaju, T. O., Bello, H. A., & Ogunlade, F. (2021). The impact of smart metering on electricity billing and consumer satisfaction in Nigeria. *Energy and Built Environment*, 2(4), 438–445. https://doi.org/10.1016/j.enbenv.2021.02.002
- Olajide, M. B., & Umeh, E. E. (2022). ICT-enabled reforms and power sector performance in Nigeria. *Utilities Policy*, 75, 101349. https://doi.org/10.1016/j.jup.2022.101349
- Osei-Tutu, E., & Mensah, P. (2022). Building ICT skills for economic transformation in Africa. *ICT for Development Journal*, 8(3), 145–160. https://doi.org/10.32628/ictd.2022.083
- Singh, A., & Bhattacharya, R. (2024). AI-driven service delivery in smart grids: Enhancing consumer complaint resolution. *International Journal of Smart Grid Technologies*, 8(1), 25–39. https://doi.org/10.1016/j.ijsgt.2024.01.004
- Ugochukwu, C., Edeh, J., & Okafor, P. (2023). ICT affordability and digital inclusion in West Africa: Policy recommendations. *West African Journal of ICT Policy*, 10(2), 77–92. https://doi.org/10.1080/wajictp.2023.102
- UNCTAD. (2022). Digital Economy Report 2022: Global digital divide. United Nations Conference on Trade and Development.
- UN DESA. (2022). E-Government Survey 2022: The future of digital government. United Nations Department of Economic and Social Affairs.
- WHO. (2023). Global strategy on digital health 2020–2025: Midterm report. World Health Organization.
- World Bank. (2023). World Development Report 2023: Digitalization for development. https://www.worldbank.org/
- World Bank. (2024). GNI per capita and income classifications. https://data.worldbank.org/