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Abstract

In complex analysis, determinants are used to study properties of matrices arising from complex-valued
functions, particularly in transformations, residue computations, Jacobians for conformal mappings,
systems of complex equations, and in evaluating special matrices like Toeplitz and Hankel. Thus, this
study is on a certain set My (@, B, t) consisting of analytic and univalent functions of the Taylor’s series

f@) =z +az? + azz® +, gefined by using and maps the unit disk U onto a domain defined by

the hyperbolic cosine function t(z) = cosh+/z. In the methodology, the principles of quantum

derivative (g-derivative) operator, subordination, g-series expansion, and some widely acknowledged
lemmas are adopted. The established results include the initial coefficient bounds for
la,| (n = {2,3,4,5}) and Toeplitz determinants: |T5,(f)|, |T22(f)|, |T23(f)], and [T3,(f)].
These results however generalised many existing ones thereby expanding the scope of its applications in
areas such as in the solution to analytical problems of orthogonal polynomials, determinants, and
frequency analysis where the special cases of the Toeplitz determinants are involved.

Keywords: Analytic function, univalent function, hyperbolic cosine function, Toeplitz determinant,
coefficient bounds.

MSC: 30C45, 30C50.

1. INTRODUCTION
Complex functions, which involve variables and outputs in the complex plane, form a cornerstone of
modern mathematical analysis. They extend real-valued functions into the realm of complex numbers,
revealing richer structures, analyses, and properties, such as analyticity, functionals, and conformality.
Within this framework, the hyperbolic cosine function
e?+e’?

2
arises naturally as an analytic function of a complex variable z . It shares similarities with the
trigonometric cosine function but exhibits distinct geometric and analytic behaviours, particularly in
mapping and transformation properties of points, lines, curves, and shapes in the complex plane. Its
analytic nature allows it to be represented by power series expansions, making it a useful tool in solving
differential equations, modeling wave phenomena, and describing shapes in hyperbolic geometry.

coshz =

Toeplitz matrices, on the other hand, originate in linear algebra but connect deeply with complex function
theory through their generating functions, often expressed in terms of Taylor’s or Laurent’s series. When
the generating function of a Toeplitz matrix involves analytic functions like the hyperbolic cosine
function, the matrix inherits structural patterns and spectral properties from the function’s analytic
behaviour. This relationship is particularly important in areas such as signal processing, numerical
analysis, and the study of integral equations, where Toeplitz determinants and their asymptotics are linked
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to special functions, such as coshz. Thus, the interplay between complex functions, the hyperbolic

cosine, and Toeplitz matrices provides a bridge between abstract function theory and practical
computational applications.

In this work, we study bounds for some Toeplitz determinants in connection with a certain set of complex
functions that are mapped into the domain of a certain hyperbolic cosine function.

2. LITERATURE REVIEW

2.1 Some Analytic Functions and Definitions

Complex functions are mathematical mappings (with transformation functions) that assign to each
complex number z = x + iy a complex value. They extend the idea of real-valued functions into the
complex plane, thereby allowing richer behaviour and deeper structural properties. When a complex
function

flz=x+iy) =ulx,y) +iv(x,y), x, vVER

is analytic, then it must surely satisfies the Cauchy—Riemann equations

ou_dv o ov
dx ay a ay o dx
and is infinitely differentiable within a chosen domain. Of interest in this study is the set of analytic and

univalent functions of the power series

o0
f(z) =z+ayz?+ azz® + - =z+Z apz" (2.1)
n=2

where a; = 1 and a,, are complex coefficients determined by the function’s derivatives at a point. This
representation is not only elegant but also central to the study of coefficient problems in complex analysis.
Coefficient problems concern the determination, estimation, and characterization of the coefficients a,,
for functions within specific classes, such as bounded turning functions, starlike functions, convex
functions, and several others. These problems are important in geometric function theory, where bounds
on coefficients provide information about the mapping properties of function f, such as its growth,
distortion, and area coverage. A notable historical example is the Bieberbach conjecture, which proposed
precise bounds on the coefficients of normalized univalent functions and was proved by Louis de Branges
in 1985. Other coefficient problems arise in the study of subclasses defined by (q)-differential operators,
(¢g)-integral operators, and functional inequalities, often leading to extremal functions that achieve these
bounds.

The applications of complex functions and coefficient theory extend far beyond pure mathematics. In
engineering, analytic functions are used to solve two-dimensional potential problems in electrostatics,
fluid dynamics, and heat conduction through conformal mappings that preserve angles and local shapes.
In physics, they appear in wave propagation, quantum mechanics, and relativity theory. In signal
processing, analytic functions are related to Fourier transforms and filter design, where coefficient bounds
can help ensure system stability and desired frequency characteristics. In number theory, they underpin
the study of generating functions, modular forms, and zeta functions, connecting analysis to arithmetic
properties.

Therefore, the study of complex functions, their coefficients, and associated extremal problems forms a
bridge between abstract mathematical theory and practical applications. The interplay between analytic
structure and coefficient constraints not only enriches our understanding of complex function behaviour
but also provides powerful tools for solving real-world scientific and engineering problems.

Going forward, let M and C represent the usual sets of natural and complex numbers, respectively. Also,
let
U:={z:z€ Cand|z| < 1}
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represent the unit disk and let A represent the set of complex-valued functions defined in . More so, let
S represent the set of those functions that are both analytic and univalent in U. It is well-known that
functions in § can by definition be expressed in Taylor’s series form (1.1) and normalized by the
conditions f(0) =0 = f’(0) — 1, and z € U. Furthermore, represented by “ < “ is the notation for
subordination. Thus, we say that for two functions f;, f> € A, f; < f5 if and only if we get a Schwarz
function

&(z) =gz +&,2% + 323 + -

normalized by the conditions £(0) = 0, |§(z)| = |z| < 1, and z € U so that the conditions

f1(@) = f2(2) » §(2) = f2(§(2))

are satisfied. Now, should f;(z) be a univalent function, then f; (z) < f;(z) if and only if the conditions
f1(0) = £5(0) and f1(U) € £2(U) ppe satisfied.

Another set of functions observed in this work is the set H of Carathéodory functions. This set is known
to consists of analytic functions whose real parts are positive in U. In general, functions in set H can be
represented in Taylor’s series form

P(z) =1+4+pz+pz2+p3z3+ - (2.2)

and normalized by the conditions ReP(z) > 0, P(0) = 1, and z € U. It is well-known that functions
P(z) and &(z) have an interrelationship defined by
P2 -1 (A +piz+pz?+psz®+) -1
) = Tl (Ut pztm t e + ) +1
which simplifies to

1 1 1 5Y 1 2 1 1 3
&(z) :E'Plz + (E P2 _El’l)z + (gpl _E'Plpz +E'P3)Z + - (2.3)

2.2 Hyperbolic Cosine Functions
The hyperbolic cosine function, denoted by cosh z, is defined for a complex variable z by

BZ _|_ E_Z
coshz = ——
2
It is an even analytic function whose series expansion is expressed as

i ZZn
coshz = Z m
n=0

and it is easy to see that it converges everywhere in the complex plane, €. Closely related to the
trigonometric cosine, coshz differs in that it arises naturally from hyperbolic geometry and models
growth rather than oscillation. In the context of complex analysis, coshz inherits all the properties of

analytic functions, including differentiability and integrability at every point, and representation through
power series or contour integrals.

The connection between coshz and complex functions lies in its analytic structure, which makes it a
member of the broader family of exponential-type functions. Through Euler’s formula for complex
arguments, coshz is linked to the cosine function via the identities cosh(iz) =cosz and
cos(iz) = coshz. This duality law allows results from trigonometric function theory to be translated
into the hyperbolic setting, and vice versa. Moreover, coshz frequently appears in the study of entire
functions, Fourier transforms, and in solving partial differential equations with complex variables.

Applications of the hyperbolic cosine span mathematics, physics, and engineering. In physics, it describes
the shape of a hanging cable (the catenary) and appears in solutions to the one-dimensional wave and heat
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equations. In special relativity, cosh functions model Lorentz transformations, relating time and space
coordinates between inertial frames. In engineering, they are used in stability analysis, signal processing,
and modeling exponential-like growth phenomena. Thus, coshz serves as both a fundamental object in
complex function theory and a versatile tool in applied sciences.

In this work, we studied some geometric properties of the hyperbolic cosine complex function

t(z) = cosvz . (2.4)
Observe that function t(z) is analytic in the unit disk T, thus, we can apply the subordination principle
by substituting (1.3) into (1.4) to get

1 1 11 1,301 11
t(f(z)) =cos,/{(z) =1 ‘I‘Eplz +1(P2 _ﬂp%)zz +E(ﬁpf ~ 54 P1P2 + P3)23
1( 91 301 11 11

il S S S S 44 ... 25
2\~ 9g0Pt t agoPi ~ 2 PiPs 24p2+p¢)z+ (2.5)

This function will be observed later.

23 Toeplitz Determinants

Toeplitz determinants arise from Toeplitz matrices, which are structured matrices whose entries remain
constant along each diagonal from left to right. A Toeplitz determinant is simply the determinant of such
a matrix, and its value depends on the sequence {T},} that defines the diagonals. These determinants have
deep connections with functional analysis, probability, and mathematical physics due to their role in
describing systems with translational or time-invariant properties.

The connection between Toeplitz determinants and complex functions appears through their generating
functions, often called symbols. If a function f (re‘g), z =g , defined on the unit circle is integrable,

then its Fourier coefficients fn can be used as the entries of a Toeplitz matrix. In this way, the determinant
of the Toeplitz matrix encodes analytic information about f. If f is analytic inside the unit disk, then
some powerful results from complex analysis, such as contour integration and factorization theorems can
be applied to study the asymptotic behaviour of the determinants as the matrix size grows. This link is
particularly important in Szegd’s limit theorem, which relates the asymptotics of large Toeplitz
determinants to the exponential of an integral involving log f. Special functions, including the hyperbolic

cosine, can serve as generating functions, tying Toeplitz determinants directly to problems in analytic
function theory.

Applications of Toeplitz determinants span multiple disciplines. In statistical mechanics, they appear in
the computation of partition functions, especially in models like the two-dimensional Ising model. In
random matrix theory, they help describe eigenvalue correlations and limiting distributions. In signal
processing and time-series analysis, Toeplitz matrices naturally model autocorrelation structures, making
their determinants useful in spectral estimation and filter design. In numerical analysis, their structured
form allows for efficient algorithms in solving large linear systems of equations and in image
reconstruction. Furthermore, in operator theory, Toeplitz determinants are connected to spectral properties
of Toeplitz operators, which have applications in control theory and complex dynamical systems.

Thus, Toeplitz determinants serve as a meeting point between linear algebra, complex function theory,
and applied mathematics. Their ability to encode analytic properties of generating functions gives them
both theoretical richness and practical utility, bridging abstract mathematical structures with concrete
problems in science and engineering.

By considering the function f in (2.1), Thomas and Halim (2017) introduced the symmetric Toeplitz
determinant defined by
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an Ay +1 Qp+z " Op+m-1
Ap+1 a, n+3 """ Apim-2
Ta(f) =| Gniz An+3 Ap  ** Opym-3

Ap+m-1 Up4m-2 Ap+m-3 0 Up

where m,n € N, a; = 1, and a,, are the coefficients of f in (2.1). A careful selection of values for m
and n shows that

[T, ()] = |1 — a3]

|T22(f)] = |a3 — aj|

IT22()] = |a3 — af]
[T31(F) = 11— 2a3 — az(az — 2a3)|

(2.6)

Interested researchers may check Thomas and Halim (2017) and Ramachandran and Kavitha (2017) for
more details.

3. METHODOLOGY

3.1 gq-Derivative Operator

The g-derivative of a function h(x), usually denoted by D, h(x), was initiated by Jackson (1910) where
it is a generalization of the classical derivative defined by

 n(g—n(x)
Dgh(x) = D (x =#0,qg = 1).

Nonetheless, the g-derivative reduces to the classical derivative as ¢ — 1. In complex analysis, ¢ -
derivative act on analytic functions, preserving many of their structural properties while introducing a
discrete scaling aspect. This makes them central to g-calculus (g-differentiation, g-integration, g-series, g-
analysis, and so on), which extends differential and integral calculus to settings involving a deformation
of parameter gq.

The connection with complex functions arises because g -derivatives can be applied to entire univalent,
bi-univalent, harmonic, and meromorphic functions, producing g -analogues of classical results like
Taylor and Laurent series. Applications include solving g -difference equations in mathematical physics,

studying special functions such as basic hypergeometric series, modeling quantum groups in
representation theory, and analyzing discrete versions of wave and heat equations in engineering and
applied sciences.

For a complex function f of the form (2. 1), the g-derivative is defined by

Df(0) = £/(0) =

f(g2) — £2) N
2SO © ﬂ’)—”z[”]q“nz 1 @)
DLf(2) = Do (Dof @) = Z [n — 1], [n] g2, 22

where "
q €(0,1), [nlg = P llHl[H]q = n implies llm D,f(2) = l;ﬁ% = f'(=2).

For example,
1. fl(z}=z=>1‘3qf(z}=[l]q—landffﬁzf(z)—{)
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2. f(2) = z+cz® = Dyf (2) = 1+[3],c2% and D f(2) = [2],[3]4cz.
More details on g-derivative can be found in Lasode et al. (2025).

3.2 Relevant Lemmas
The following lemmas hold and shall be applied in the course of proving the theorems.
Lemma 3.1. If P(z) is as given in (2.2), then |p,,| = 2 for every n € N (Thomas et al., 2018).

Lemma 3.2. If P(z) is as given in (2.2), then
1pm+n - Xpmpn] =2forX € [0;1]
(Ravichandran and Verma, 2015).

Lemma 3.3. If P(z) is as given in (2.2), then for ,K,L € R,

|Jpi — Kpipo + Lpsl = 2|1 + -2 + K|+ 2|]] — K + L|

(Arif et al., 2019).

Lemma 3.4.If P(z) is as givenin (2.2); /,K,L,M € R;

0<K<1,0<L<1,and

8K(1—K){(LM—2])? +[L(K+ L) —M]*? +L(1 — L)(M — 2KL)} = 4KL*(1 — L)*(1 — K),
then

4 2 3 2 <
Py +Kp; +2Lpips — S Mpips-—p,

(Ravichandran and Verma, 2015).

It

2

Lemma 3.5. If P(z) is as given in (2.2), then for U € C,
2

P1
U=
P2 2

(Babalola and Opoola, 2008).

= 2max {1,|1 — U]}

4. MAIN RESULTS
4.1 A New Set of Analytic Functions
Definition 4.1. Function f of the infinite series form (2.1) is said to be a member of the set Mg (a, B, t) if

the subordination condition
1
1 -I—E{I'Jqf(z) + BzDif(z) — 1} < t(2) (4.1)

is satisfied for the conditions: @, § € C, q € (0,1), t(z) = cosh+/z , and D, f(z) is as defined in (3.1).
Thus, to avoid repetitions, we shall let the declarations of the parameters &, § € C,
g € (0,1), (z) = coshv/z , and D, f(z) hold throughout this work.

4.2 Initial Coefficients Bounds for f € M,(«a, B, 1)
Theorem 4.1 If f in (2.1) is in the set M, (@, B, t), then

< 4.2
la2] — 2[2]q|1 +;8 ’ ( - )
la| = o] . (43)

2[3],]1 + [21,8|
lay| = la] (4.4)

2[4],|1 + [31,8]°
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le]
2[5],|1 + [41,8|

A

|las]
and in general,

lan| =

(4.5)

|ex]

=2).
2[nl,|1 + [n - 11,8| (n=2)

Proof. If f € Mg (a, B,t), then by the subordination principle, (4.1) can be expressed as

1

1 —I—E{Dq f(2) + pzD2f(z) — 1} = t(&(2)). (4.6)
Observe that from (2.1) and (3.1) we will get

f(2) =z + az? + azz3+ayz* + asz® + -,

Dof(2) = 1+ [2]gazz + [3lqasz® + [4]qasz® + [5lqasz* + -,  (4.7)
and
BzDZf(2) = [1]4[2]4B8azz + [2]4[3]gBasz® + [3]4[4]gB asz® + [4]4[5]qBasz™ + -+ (4.8)
where putting (4.7) and (4.8) into LHS of (4.6) gives

1 +%{qu(2) +132sz(2) — 1} =1 +%a22+ (1 + [Zlqﬁ)[g]qagzz
(1 + [3]q18)[4]q (1 + [4]q,3)[5]q

(4.9)

Recall that the RHS of (4 6) was earher given by (2 5), hence, comparing the coefficients of (4.9) and (2.5)
shows that

L+pll, 1 o«
R R T (10
and
B a ||
Hence, the application of Lemma 2.1 shows that
laz| = m(z)
eﬁnd some s1n)1p11ﬁcat10ns give (4.2). Secondly,
1+[21p)Bl; 1 11 B a 11
p az = 1(392 24 Pl) az = 4[3]q(1 N [Z]qﬁ) (Pz _ﬂpf) (4.11)
and
_ @ _u, = lal _1
las| = 4[3]q(1 -I-[Z]qﬁ) (Pz 24.[’1) = |as| —4[3]q|1 2] P2 — 54 Pi|:

Hence, the application of Lemma 2.2 (where X = %) shows that

_ |e]
= 2
1=y + 21 p

and some simplifications give (4.3). Thirdly,

(1 + [31,8)[4], _1(301 s 1L )
p ay 4144_{]35'1 12P1P2 Ps
implies
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a (301 11 + ) (4.12)
a i .
and
] = | ‘ 3-:)1 1 s
ay| =

Hence, the application of Lemma 2.3 (where = % ,K = % , L. = 1) shows that

| @
4
4[4],]1 + [31,8|
and some simplifications give (4.4). And lastly,
(1 + [41,8)[5], 1/ 91 11 11 301
= —( 5 P1Ps T an 480 pips + 'P4)

A

— o2
a s=3\"5g0% T22" T 13
implies
a ( 91 4_|_11 5 11 +301 N )
dc = — — _—
and
lac| = || ‘ 4_'_11 - 11 +3CI1 N
az| = — — .
Hence, the application of Lemma 2.4 (where = il K=—,L= u , M= —) shows that
960 24 12 480
asl = ——14____2)
5 = .
4[51,|1 + [41,8]
and some simplifications give (4.5).
4.3 Bounds for some Toeplitz Determinants
Theorem 4.2 If f in (2.1) is in the set M, (@, B, t), then
_ |ex|
T N1+ ——7——.
T2 DI =14 3y 7

Proof- Observe that from (2.6),
IT2.(H| = 11— ai| =1+ a3
and using (4.2) implies that
|e]

T NE1+
24l =14 557 g
which complete the proof.

Theorem 4.3 If f in (2.1) is in the set M, (a, B,t), then

|la|? 1
<
2201 = {[z] S+ A1 T BRI+ [zlqm?}
Proof. Observe that putting (4. 10) and (4. 11)21nto (2.6) means

a a 11 g
To2(f) = a3 —aj = [4[—2151(1 -l-ﬁ}pl] - l4[3]q(1 n [Z]qﬁ) (Pz _EP%)]
2

B a? 5 o ( 11 2)
T16RIE(+ B2 T 161 + [21,8)7 \P? T 24Pt
so that
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11 _)?

|a|? 11,
[25] 2435'1

16[2]Z]1 + B|?

|a|?
16[31311 + [214B817

IT,(F) = Ipl +

Hence, the application of Lemmas 3.1 and 3.2 shows that

L [ e B
2.2 = 1612121 + B2 16[31Z]1 + [2],8]?

and some simplifications complete the proof.

(2)?

Theorem 4.4 If f in (2.1) is in the set M, (@, B, t), then

l|? 1 1
IT3(F)] = 4 {[31511 ¥+ [;;:]qﬁ]2 + [4]%]1 + [BJqﬁlz}.

Proof. Observe that putting (4.11) and (4.12) into (2.6) means
To3(f) = a5 — a}

_l a ( _E.z)r_l « (301 o )r
" LAl (T + 21p) 2 a[a],(1 + [31,6) \1440" ~12PP2 T P

B a? ( 11 2)2 a? ( 301 , 11 N )2
T 16BE + 21,87 \P? T 2aP1) T 1641z (1 + [31,8)% \144071 T 12P1P2 T Ps
so that
a? 11

T )| = ——p?

N a? 301 , 11 N 2

16[412 (1 + [31,8)% I144071 ~ 12P1P2 T 3
Hence, the application of Lemmas 3.2 and 3.3 shows that
2 a
T =3 2)2— 2)?
2012 teppa+ ee? P~ 1eun a +BLA? 2
and some simplifications complete the proof.
Theorem 4.5 If f in (2.1) is in the set M, (@, B, t), then
T;: (DI =1+ |l ! + - max{l V. (a ﬁ)}
MY 2 2B+ B2 T 2[81311 + [21,812 e

where
1 al3]y(1+ [3148)
12 [2]%(1 + B)?

Vq(“-ﬁ) = ‘

Proof. Observe that from (2.6),
IT3:(A)I=11—2a3 — az(az — 2a3)| = 1+ 2|ay|? + |azllas — 2&3].  (4.13)

Foremost and using (4.10) and (4.11) means
2
az —2a; = = (Pz_EP%)_Z P
4[3],(1 + [21,8) 24 4[2],(1 + B)
a 1l a?

- P2 — P% - 2 gp%
4[31,(1 + [21,8) 96[31,(1 + [21,8) 8[2]3(1 + B)
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B @ @ 11 a 5
Bl (1+ 21,87 5[12[3141 +[2,8) " 2R +ﬁ>zlp1
B a 11 al31,(1+ [2148)] p?
_4[3]q(1+[2]q,8){p2_[ﬁ [212(1 + B)? 7}
so that
oz (1 OO Bt
2 Tap i+ 218177 \127 [RIEQ+B? )2

or for brief,
|ex|

4[3]4|1 + [21,8]

2
= p
las —2a3| = P2 — Ug(a. ) (4.14)

where

0. (e B) = 11 N al3],(1 + [2],8)
- 12 [2]2(1 + B)°

Application of Lemma 3.5 implies that

B 11 al3l(1+[218)\| |1 al3lg(1+[31,8)]
[t =Uq (@ )l = ‘1_ (ﬁ+ PHEI )l NP ECE N
so that (4.14) becomes
las —2a3| = il 2max{1, V,(a, 8)}
4[3],]1 + [21,8] !
 al
- 211+ Bl max{1, V, (a, §)}. (4.15)
Now, using (4.2), (4.3) and (4.15) in (4.13) yields ,
|e]
]TS.IU)] =1 +2 (2[2](1“_ ‘l‘ﬁ])
-|-( la] )( lel max{l,V(a.ﬁ)})
2[3],]1 + [21,8]/ \2[3]4]1 + [2],8] !
2|a|? |e|?
=1+ + max{1,V;(a,B)}

0 a2Z1+ B2 4B+ (21,812
and some simplifications complete the proof.

5. DISCUSSION

The importance and applications of calculus in almost all ramification of human endeavours cannot be
underrated. In particular, g-calculus which is the g-analogous version of the classical calculus was
adopted in this study, where the g-differentiation was used to define the new set M, (e, B), therefore

generalising many known classical differential operators. As a result of this classic provision from g-
differentiation, the properties of the new set of analytic and univalent functions, defined in the unit disk
was studied within the space of a certain hyperbolic cosine function for the bounds for some Toeplitz
determinants. These properties involve four special cases of Toeplitz determinants: |T5 1 (f)], |T22(f)],

|T53(f)]|, and |T5 4 (f)], whose bounds exist as evident in the theorems. Nonetheless,

(1) the new set generalises many existing and new ones when the involving parameters are varied;
(ii) the results improve some existing ones;
(i)  the results unify some existing ones;
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(iv) the results open new directions of research in geometric function theory, where complex
functions bridge the gap between Toeplitz determinants and a hyperbolic cosine function;

(v) the results therefore, broaden and open new areas of applications in conformal mapping which
has applications in fluid mechanics, aerodynamics and in some areas of engineering designs and
constructions.

6. RECOMMENDATION

The study recommends that the results from work be applied in solving various physical problems in
engineering designs and constructions, heat flows, aerodynamics, hydrodynamics, fluid flows and in the
solution to analytical problems of polynomials, determinants and frequency analysis where the special
cases of the Toeplitz determinants are involved.

7. CONCLUSION
In conclusion, we were able to define a new set M, (a, B) of functions f that are analytic and univalent

in the unit disk. The definition of the new set of functions involves g-differentiation, subordination, and
hyperbolic cosine function. In Theorem 4.1, we established bounds for the coefficients of functions
f € My(a,B), the bounds were generalized for n € N . Furthermore, In Theorems 4.2 - 4.5, the

coefficients of f € M, (a, 8) formed the elements of a symmetric Toeplitz determinants whose bounds

were investigated and established. The new set however generalised many existing ones and the results

from this work extended many known and new ones when the underlying parameters are varied.

Invariably, the new set and its results broaden the scope of applications of the existing ones in available

literature and practical.
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